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Abstract 

Dynamic, randomized-input functional testing, or black-box fuzz testing, is an effective technique 
for finding security vulnerabilities in software applications. Parameters for an invocation of black-
box fuzz testing generally include known-good input to use as a basis for randomization (i.e., a 
seed file) and a specification of how much of the seed file to randomize (i.e., the range).This re-
port describes an algorithm that applies basic statistical theory to the parameter selection problem 
and automates selection of seed files and ranges. This algorithm was implemented in an open-
source, file-interface testing tool and was used to find and mitigate vulnerabilities in several soft-
ware applications. This report generalizes the parameter selection problem, explains the algo-
rithm, and analyzes empirical data collected from the implementation. Results of using the algo-
rithm show a marked improvement in the efficiency of discovering unique application errors over 
basic parameter selection techniques. 

  



 

CMU/SEI-2012-TN-019 | vi 

 



 

CMU/SEI-2012-TN-019 | 1  

1 Introduction 

Dynamic randomized-input functional testing, also known as black-box fuzz testing or fuzzing, has 
been widely used to find security vulnerabilities in software applications since the early 1990s [1, 
2, 3]. Since then, fuzz testing evolved to encompass a multitude of software interfaces and a varie-
ty of testing methodologies [4, 5, 6]. 

Because of their basic nature, black-box fuzzing techniques and tools are relatively simple to im-
plement and use. However, black-box fuzzing has known disadvantages when compared to more 
sophisticated techniques—notably inferior code path coverage and reliance on the selection of a 
good set of seed input (e.g., seed files) [4, 5]. Despite advances in fuzzing tools and methodolo-
gies, many security vulnerabilities in modern software applications continue to be discovered us-
ing these relatively unsophisticated techniques [7, 8, 9, 10, 11]. 

Studies that compare fuzzing methodologies generally recommend using a mix of methodologies 
to maximize the efficacy of vulnerability discovery [5, 7, 12, 13, 14]. Our experience with black-
box fuzz testing showed that the difference between an effective fuzzing effort (i.e., one that finds 
vulnerabilities) and an ineffective one (i.e., one that does not) often lies in the selection of pa-
rameters passed to the fuzzing tool. 

In this report, we present research focused on automating parameter selection for a sustained 
black-box fuzz testing effort. The algorithm presented here was implemented in the open-source 
CERT® Basic Fuzzing Framework (BFF) product [15] and was used to discover several previous-
ly unknown security vulnerabilities [8, 9, 10, 11]. Although our work was implemented to test 
application file interfaces running on Unix operating systems, it is notionally applicable to other 
fuzzing tools, operating systems, and interface types. 

This report covers the following topics: 

• We describe a workflow for black-box fuzz testing that maximizes the number of unique 
application crashes found during a sequence of test iterations.  

• We identify two parameters for an iteration of file fuzz testing and generalize the problem of 
parameter selection. 

• We present an algorithm to be used for selecting fuzzing parameters that maximize the num-
ber of unique application errors. 

• We discuss the results of executing an implementation of the algorithm on several applica-
tions and compare them to the results of executing the same number of tests run without the 
algorithm. 

 
® CERT is a registered trademark owned by Carnegie Mellon University. 
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2 Background: Black-Box Fuzz Testing with the CERT BFF 

The CERT BFF is a system used for testing the security of applications on Unix-based (e.g., 
Linux, Mac OS X) operating systems. The CERT BFF uses Sam Hocevar’s zzuf tool [16] to per-
form mutation-based, black-box fuzz testing on application file interfaces. The zzuf tool in turn 
executes the application under test. We refer to successive invocations of zzuf testing a single ap-
plication as a fuzzing campaign. The CERT BFF allows a security auditor to perform a fuzzing 
campaign by automating invocations of the zzuf tool (see Figure 1). 

The zzuf testing tool is open source software, so detailed user documentation is publicly available 
[16, 17]. Each invocation of the zzuf tool repeatedly executes the application under test with mu-
tated test cases until a crash is detected or until an optional maximum number of application exe-
cutions exit without a crash. In this report, we refer to each execution of the application under test 
(via zzuf) as an iteration of fuzz testing. We refer to successive iterations executed under a single 
invocation of zzuf as an iteration interval. In the CERT BFF, the maximum interval size passed to 
zzuf is configurable, but the default is 500 iterations. 

In addition to the application under test, the maximum iteration interval size, and other options, an 
invocation of zzuf must also specify a seed for randomization (randomization seed), a path to a 
file to use as a basis for mutation (seed file), and a proportion of the file to randomize (range). 
The zzuf tool randomly mutates the seed file by changing a number of bits roughly equal to the 
specified range multiplied by the size of the seed file. The number and position of the bits that are 
changed is randomized based on the randomization seed. Randomization in zzuf is implemented 
so that repeated invocations using the same randomization seed, range, and seed file will produce 
identical test cases. In this report we refer to the range and seed file collectively as fuzzing param-
eters. 

A fuzz campaign in the CERT BFF is a loop built around successive invocations of the zzuf tool 
(see Figure 1). First, the CERT BFF chooses zzuf invocation parameters for the next iteration in-
terval by examining the running set of crashing test cases (if any exist). The algorithm used to 
choose the zzuf invocation parameters is the focus of subsequent sections of this report. 

 

Figure 1:  Main Loop for a Fuzz Campaign in the CERT BFF 
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Second, the CERT BFF invokes zzuf with the chosen parameters. If a crash is detected during that 
iteration interval, the application is launched using a debugger to generate a hash of the applica-
tion back trace at the point of failure. The logic used to generate this hash is extended from the 
fuzzy stack hash method employed in a study researching dynamic test generation to find bugs in 
Linux programs [5]. 

The hash determines if the detected crash represents a unique application error for the fuzz cam-
paign. Finally, if the new hash is unique, it is added to a running set, the parameter scores are up-
dated, and additional analysis is performed on the new unique crash. Besides hashes, the running 
set also includes metadata such as the crashing test case, the seed file from which it was derived, 
and the fuzzing parameters used to find it. 

Initial selection of seed files [4], application and system configuration [18], triage of application 
errors [19], and application error analysis are important aspects of a fuzzing campaign. However, 
these aspects are not directly relevant to the fuzzing parameter selection algorithm outlined in this 
report, so we do not discuss them in detail. 
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3 Maximizing the Number of Unique Crashes 

In this section, we describe two aspects of the parameter selection problem and show how the ap-
plication of a generalized solution can improve the results of a fuzzing campaign. 

Recent fuzzing frameworks and research use file format grammars, static analysis, white-box ap-
proaches, and other techniques to direct fuzzing based on code execution paths [5, 7, 20, 21, 22]. 
This new approach is simpler because we begin a campaign with very little knowledge about the 
seed files, format details, or code coverage. Instead, we apply basic probability theory to adjust 
parameter selection as the campaign progresses to maximize the number of unique crashes found 
during a fuzzing campaign. This section first describes how the CERT BFF attempts to reach this 
goal for seed files, then ranges, and then generalizes the algorithm to apply to both parameters. 

3.1 Selecting Seed Files 

To find as many unique crashes as we can, we begin by assuming no knowledge of the seed files. 
We simply empirically measure their crash density, which we define as follows: for the i th seed 
file, the crash density di is the empirically measured number of unique crashes found while fuzz-
ing the file (ui) divided by the number of trials attempted (ti). 

equation 1 ݀௜ = ௜ݐ௜ݑ   

The goal is to measure the crash density of a seed file, then allocate the fuzzing campaign’s re-
sources to focus the bulk of the effort on the seed files that are most productive (i.e., have a higher 
crash density). Thus we expect the selection probability across the seed file to be set to vary over 
time as the campaign finds (or does not find) new unique crashes within the set. We do not aban-
don seed files entirely, though, because it is possible that they could produce unique crashes. 

The desired solution has the following four criteria: 

1. A seed file with observed crash density d should be chosen twice as often as a seed file with 
an observed crash density of d/2. 

2. If the crash density of two files is equal, either one should be chosen with equal probability. 

3. Seed files with no observed crashes should not be abandoned because they could still pro-
duce unique crashes. 

4. Given two files, both with 0 observed crashes, the one with fewer trials should be preferred 
over the one with more trials because we know more about the one with more trials. 

3.2 Modeling the Process 

We begin by modeling the fuzzing process as a sequence of Bernoulli trials. Each trial is inde-
pendent and can have one of two possible outcomes: either the program crashes or it does not. We 
leverage this simple model to equate the crash density of individual seed files with the probability 
of finding a crash in the next iteration. 
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In the CERT BFF, an interval may contain a few hundred to a few thousand iterations at a time to 
mitigate setup and teardown costs (in terms of both CPU and person hours) associated with invok-
ing the fuzzing tool. For each invocation of the fuzzing tool, we choose the next seed file with a 
probability proportional to its observed crash density relative to the other seed files’ crash densi-
ties. Therefore, to make this selection, we first calculate the sum D of all the crash densities: 

equation 2 ܦ = ෍ ݀௜௡
௜ୀଵ  

 

Then we calculate a probability distribution on the set of seed files S such that each seed file si is 
chosen with probability pi given by 

equation 3 ݅݌ =  ܦ݅݀
 

For the start-up case in which both ui and ti are zero, which would leave di undefined, we simply 
assign the value di=1. This approach is essentially what is called “fitness-proportionate selec-
tion,” as described by John Holland in his book Adaptation in Natural and Artificial Systems [23]. 

At this point, we satisfied the first two criteria for the desired solution listed in Section 3.1. For 
two files with u1=6 and u2=3 and an equal number of trials t1=t2=100, we can see that p1=2p2. Also, if d1=0.02 and d2=0.02, then p1=p2. However, we still must deal with the case 
where some number of trials was completed but no crashes were observed as in the third criterion. 
As it stands, if ui=0, then di=0 and thus pi=0. 

Because we are describing a series of Bernoulli trials, we expect the results to conform to a bino-
mial distribution. However, since the number of trials is much larger than the expected number of 
successes (a single success out of thousands of trials is typical), we can apply the Poisson approx-
imation of the binomial distribution to allow for easier calculation of confidence intervals. 

The Poisson distribution is described by the parameter λ: the number of successes divided by the 
number of trials. Hence the crash density di can be substituted for the parameter λ in a Poisson 
distribution. Doing so allows us to take advantage of confidence intervals on the Poisson distribu-
tion to address the third criterion. 

We calculate the one-sided 95% upper confidence bound on the Poisson distribution UCB (di, 95%) to be used in lieu of the crash density di for each file. Substituting into equation 2, it be-
comes 

equation 4 ܦ = ෍ ,௜݀)ܤܥܷ 95%)௡
௜ୀଵ  

 

and therefore a modified pi is also used such that 

equation 5 ݅݌ = ,݅݀)ܤܥܷ ܦ(95%  
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Because the 95% upper confidence bound is always greater than zero, we no longer have a prob-
lem with files that have no observed crashes. They will be chosen with a non-zero probability. 
Furthermore, since the width of the confidence interval narrows, given more trials and the same λ 
(or di), the final criterion is addressed because two files, both having no observed crashes, will 
result in preferring the one with fewer trials due to its larger confidence interval value. 

The following procedure summarizes the algorithm thus far: 

1. Given a set of seed files, assign each file an initial crash density of 1.0 (i.e., assume they will 
definitely crash on the next try). 

2. Calculate pi for each file (pi  for all files will be equal at this point). 

3. Choose a file according to the distribution given in step 2. 

4. Fuzz the file for an interval of iterations (e.g., a few hundred trials). 

5. Calculate the upper 95% confidence interval on the observed crash density for that file (i.e., 
update pi).  

6. Repeat the steps, starting with step 2. 

3.3 Specifying Ranges 

Different file formats have different structural requirements. Some are merely a header followed 
by data. Others have higher structural requirements (e.g., XML, PDF). Fuzzing tools typically 
have either a set value or require the analyst to choose a parameter that specifies how much input 
mutation should be performed. As previously described, zzuf provides a parameter called range 
that allows the user to specify the proportion of bits that will be flipped in the test cases it gener-
ates. 

Ranges are expressed as a decimal value between 0.0 and 1.0 that indicates the proportion of the 
file that will be altered (e.g., a range of 0.06 would mean that 6% of the bits will be flipped when 
the file is read). The range parameter allows a lower and upper limit to be specified, so a user can 
instruct zzuf to fuzz between 10% and 50% of the bits in the file using the range value 0.1–0.5. 

Using various fuzzing tools, we learned that if too many bits are flipped, the file format may no 
longer be recognized as valid. The program may reject the file as invalid before processing data 
that would reveal defects. At the same time, fuzzing too few bits in the file inadequately searches 
the space of possible inputs. We also observed that while there can be a significant difference be-
tween fuzzing 0.5% of the bits in a file versus 1%, there is little difference between fuzzing 90% 
and 90.5% of the file. Thus, we divide the range 0.0–1.0 into exponentially scaled ranges starting 
with a range that effectively fuzzes one or two bits up through a range that fuzzes between 60–100% of the file. 

Once we calculate the various ranges we plan to use, we still must decide how to allocate the 
fuzzing campaign across those ranges. A naïve implementation would be to simply select a range 
with equal chance of choosing any given range. Instead, we applied the same method used for 
seed file selection to measure each range’s crash density. This approach permits us to automatical-
ly adjust the fuzzing campaign’s range parameters on each seed file based on what the campaign 
actually found. Different files may have different optimal ranges for any number of reasons, so it 
is best to adjust the range parameters for individual files rather than for a set of files. 
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The algorithm is nearly identical to that presented for seed files: 

1. Given a set of ranges for a seed file, assign each file an initial crash density of 1.0 (i.e., as-
sume they will crash on the next try). 

2. Calculate pi for each range (they will all be equal at this point).  

3. Choose a range according to the distribution given in step 2.  

4. Fuzz the file for an interval of iterations (i.e., a few hundred trials). 

5. Calculate the upper 95% confidence interval on the observed crash density for that range 
(i.e., update pi).  

6. Repeat the steps, starting with step 2. 

3.4 Generalizing the Algorithm 

We successfully applied this algorithm to the tuning of a fuzz campaign’s parameters of seed file 
selection and range selection. As a result, we formulated a generalized model, which we refer to 
as a scorable set. The scorable set maintains a set of items, each of which keeps track of its num-
ber of successes and trials, which it, in turn, uses to calculate its 95% upper confidence bound to 
be used in probability calculations. 

We expect to use this model for other parameter selection problems where we lack a more robust 
model. For example, in a fuzzing campaign where multiple mutation strategies (e.g., bitwise, 
bytewise) are used, a scorable set with the mutation strategies as the individual items could be 
used to automatically measure and discover the most productive mutation strategy. A simplified 
example of the scorable set model implemented in Python can be found in Appendix B: Scorable 
Set Example Source Code (Python). 
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4 Methodology 

In this section, we describe the methodology for testing the approach described in Section 3. 

The new algorithm was initially developed using the CERT BFF to fuzz ImageMagick’s convert 
program version 5.2.0. This older version of convert is known to be highly susceptible to fuzzing 
(i.e., it crashes frequently). Each iteration of fuzz testing completes quickly, so it provides a quick 
turnaround for testing new algorithms. The initial results from convert were promising. 

To more conclusively determine whether the algorithm for parameter selection could reveal more 
unique application errors than completely random parameter selection, we designed an experi-
ment to test two applications. We executed scenarios with the algorithm enabled and scenarios 
without the algorithm enabled for both applications. If the scenarios using the new algorithm re-
vealed more unique crashes than the ones without it, we would conclude that the algorithm im-
proved the detection of unique application errors over the default (purely random) scenario. 

To confirm the results of the experiment, we set up two distinct fuzzing campaigns using the 
CERT BFF: one using FFmpeg version SVN-r0.5.5-4:0.5.5-1 and the other using Oracle’s Out-
side In 8.3.5 library [13, 24]. We chose these two products because they offer a large attack sur-
face stemming from their support for many different types of files as input. 

FFmpeg is a tool used for converting, recording, and streaming audio and video. Outside In pro-
vides the ability to read and transform various unstructured file formats. For FFmpeg, we used a 
collection of various video files found on the internet as seed files. Similarly, the Outside In tests 
used a variety of document and other file types that Outside In normally handles. Table 1 de-
scribes the seed files we used in more detail. 

Table 1:  Application Test Summary 

 FFmpeg Outside In 

Version SVN-r0.5.5-4:0.5.5-1 8.3.5 

Number of Seed Files 104 76 

Seed File Types AVI, F4V, FXM, MNG, MPG, 
MP4, OGV, MOV, SWF, 
ASF, WMV 

123, AI, ASF, EML, EXE, DLL, CDR, DCX, DPT, DWG, 
EMF, GDF, ICO, ICS, JB2, JP2, JPX, MHT, MGS, ODG, 
ODT, OFT, ONEPKG, PCX, PDF, PICT, PPM, PPT, 
PR4, QPW, MOV, RTF, RM, SDA, SDC, SDD, SDW, 
SHW, SVG, SXC, SXD, SXI, SXW, TXT, TGA, TIF, DAT, 
VCF, AVI, VSD, WB1, WB2, WB3, WBMP, WMV, WK1, 
WK2, WK3, WK4, WMF, WPG, XPS, XSN 

Seed File Sizes 1KB-960KB (median 12KB) 75B-3.9MB (median 48KB) 

For each application, we created four scenarios: 

1. equiprobable selection of both seed files and ranges (denoted S0 R0 in Tables 2 and 3) 

2. equiprobable seed file selection with scorable-set-based range selection (S0 R1) 

3. scorable-set-based seed file selection with equiprobable range selection (S1 R0) 

4. scorable-set-based seed file and range selection (S1 R1) 
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Finally, because the fuzzing process is inherently stochastic, for each of the four scenarios we 
created 5 virtual machine clones to allow us to analyze the variability of the results.1 Each virtual 
machine clone was then configured to use a different initial randomization seed value to be passed 
to zzuf via the CERT BFF. In total, there were 20 virtual machines per application. The virtual 
machines were allowed to run for 18 days for FFmpeg and 6 days for Outside In. Examples of the 
CERT BFF configuration for both campaigns are listed in Appendix A: CERT BFF Configuration. 

 
1 We used the Debian-based “DebianFuzz” virtual machine distributed with the CERT BFF version 2.5. This vir-

tual machine is designed to provide a host environment specifically tuned for fuzzing. By default, it expects a 
single processor and 500MB of RAM, so it is sufficiently lightweight to allow many clones to exist on a single 
physical system. 
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5 Results and Discussion 

This section describes the results of the controlled test conducted using the approach described in 
Section 4. 

Results for both applications indicate that after an initial learning period where the algorithm ex-
plores the parameter space, the scenario in which both seed file and range selection use the scora-
ble set algorithm outperforms the other scenarios. 

At the start of a campaign, the seed files and ranges are all equally likely to be selected because 
they all have equal crash density values of 1. After the first seed file and range are selected and an 
iteration interval is completed, their crash densities reflect the measured value (as already de-
scribed), which is typically much smaller than 1. 

Because of the selection algorithm, a specific seed file and range will likely not be selected again 
until all other ranges and seed files receive some attention. For a fuzzing campaign with dozens of 
seed files and a few dozen ranges for each seed file, this start-up phase can take a few thousand 
iterations to find the first crash, assuming it finds any at all. The findings from the experiment 
indicate that all four scenarios behave similarly until after a few crashes are found. 

For FFmpeg, after 500,000 iterations the scenario with both selection features enabled yielded an 
average of 121 unique crashes versus an average of 106 unique crashes for the equiprobable sce-
nario (14% improvement). At 1 million iterations, the score was 210 to 143 for both features ver-
sus equiprobable, respectively (47% improvement). At 5 million tests, the score was 616 to 333, 
respectively (85% improvement). 

The mixed scenarios with either range selection or seed file selection enabled fell in the middle at 
just over 400 unique crashes after 5 million tests. Table 2 summarizes the results for the FFmpeg 
campaign. 

Table 2:  Experiment Results Summary for FFmpeg 

FFmpeg Unique Crashes Found (Average of 5 Runs Each) 

N Trials S0 R0 S0 R1 S1 R0 S1 R1 

500 0 0 0 0 

1K 0 0 0 0 

5K 3 3 2 4 

10K 6 7 6 8 

50K 23 23 23 23 

100K 38 33 39 41 

500K 106 95 112 121 

1M 143 151 172 210 

5M 333 421 413 616 

The results are shown more visually in Figure 2. Notice the clear advantage of using the S1R1 
scenario. 
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Figure 2:  Experiment Results Summary for FFmpeg 

Similarly, the experiment results for Outside In, at 500,000 tests with both features enabled, 
yielded an average of 78 unique crashes versus an average of 65 unique crashes for the equiprob-
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(61% improvement). 

Due to the shorter duration of the Outside In campaign, we did not reach 5 million tests. The 
mixed scenarios produced between 84 and 104 unique crashes after 1 million tests. Results are 
summarized in Table 3. 

Table 3:  Experiment Results Summary for Outside In 

Outside In Unique Crashes Found (Average of 5 Runs Each) 
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500 0 0 0 0 
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Figure 3:  Experiment Results Summary for Outside In 
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6 Limitations and Future Work 

In this section, we discuss the limitations of this work and explore possible improvements and 
extensions. 

We observed that given similar elapsed times (18 days for FFmpeg and 6 days for Outside In), the 
S1R1 instances completed about 10% fewer total iterations than the S0R0 instances. While we did 
not collect granular timing data and therefore did not perform a detailed analysis, one possible 
explanation of this difference is because S1R1 found more unique crashes, more time was spent 
performing the additional analyses that the CERT BFF does for each unique crash.2 

Furthermore, by focusing on parameters that produced more unique crashes, we expect the S1R1 
campaigns to observe more duplicate crashes as well. This feature implies more time spent deter-
mining uniqueness and less time spent fuzzing. While we have explained an intuitive rationale for 
this phenomenon, future work could include a detailed timing analysis of fuzz campaigns to con-
firm our conclusions. 

While the team continually tunes the crash uniqueness algorithm as we test various types of appli-
cations, we learned from coordinating results with software vendors that the unique fuzzy stack 
hashes do not necessarily correspond directly to unique application bugs. Improving the fuzzy 
stack hashing algorithm and augmenting it with other types of analysis could strengthen data used 
to compare automated bug-finding techniques, both in the CERT BFF and other testing frame-
works.  

The controlled test described in this report involved executing fuzz campaigns against two appli-
cations for several days each. The results presented are consistent with what we observed in the 
ongoing operational use of the CERT BFF against various software applications. However, the 
data set used to draw conclusions in this report could be strengthened by testing additional appli-
cations in a controlled manner. 

While the algorithm in this report proved to be effective, we have begun exploring other statistical 
approaches that may lend themselves more directly to analysis and scaling, such as Bayesian in-
ference [25]. We leave exploration of these approaches to future work. 

 
2 When the CERT BFF finds a new unique crash, it runs the test case through the GNU debugger (GDB) and the 

valgrind and callgrind tools and records the stderr produced for the test case. 
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7 Conclusion 

In this report, we described a workflow for black-box fuzz testing and an algorithm for selecting 
fuzz parameters to maximize the number of unique application errors discovered during a fuzzing 
campaign. We presented an open-source implementation of the algorithm in the CERT BFF, 
which was used to find several previously unknown security vulnerabilities. 

Further, we described a new methodology for testing the algorithm and discussed the results. We 
found that, after an initial learning period, the algorithm significantly improved the efficiency of 
discovering unique application errors over basic parameter selection techniques. 

We have shown that applying the simple machine-learning algorithm presented here can markedly 
improve black-box fuzzing techniques. The algorithm described in this report continues to be used 
to discover new security vulnerabilities in software applications. The source code for a working 
implementation of the algorithm is available in Appendix B: Scorable Set Example Source Code 
(Python). Also, the algorithm described here was implemented in the CERT BFF version 2.5 and 
is available under a liberal software license compatible with GPLv2 at 
http://www.cert.org/download/bff. 

http://www.cert.org/download/bff
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Appendix A: CERT BFF Configuration 

This appendix contains the configuration used for the CERT BFF instances used in the FFmpeg 
campaigns described in this report. Each instance of a given scenario was configured with a dif-
ferent start_seed value (e.g., 0, 10000000, 20000000) 

[campaign] 

id=Default BFF Campaign 

distributed=True 

 

[target] 

cmdline=ffmpeg -y -i $SEEDFILE -acodec pcm_s16le -f rawvideo /dev/null 

killprocname=ffmpeg 

 

[directories] 

remote_dir=~/remote 

seedfile_origin_dir=%(remote_dir)s/seeds 

debugger_template_dir=%(remote_dir)s/debuggers/templates 

output_dir=~/results 

crashers_dir=%(output_dir)s/crashers 

seedfile_output_dir=%(output_dir)s/seeds 

local_dir=~/fuzzing 

seedfile_local_dir=%(local_dir)s/seeds 

cached_objects_dir=%(local_dir)s 

temp_working_dir=%(local_dir)s/tmp 

watchdog_file=/tmp/bff_watchdog 

 

[zzuf] 

copymode=0 

start_seed=0 

seed_interval=500 

max_seed=10000000000 

 

[verifier] 

backtracelevels=5 

savefailedasserts=0 

minimizecrashers=False 

minimize_to_string = False 

 

[timeouts] 

zzuftimeout=3 

killproctimeout=60 

progtimeout=5 

debugger_timeout=15 

valgrindtimeout=60 

watchdogtimeout=3600 

 

[memcache] 

server=127.0.0.1 

port=11211 
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For the Outside In campaigns, a similar configuration file was used that substituted the previous 
[target] section with the following: 

[target] 

cmdline=exsimple $SEEDFILE /dev/null 

killprocname=exsimple 
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Appendix B: Scorable Set Example Source Code (Python) 

This appendix contains a simplified implementation of the algorithm described in this report. 

import random 

import scipy.stats 

from collections import defaultdict 

 

class ScorableSet(object): 

  def __init__(self): 

    self.items = {} 

    self.successes = defaultdict(int) 

    self.tries = defaultdict(int) 

    self.confidence = 0.95 

    self.scaled_scores = defaultdict(float) 

    self.lambdas = defaultdict(float) 

    self.sum_scores = 0.0 

    self.probabilities = defaultdict(float) 

 

  def add_item(self, key, value): 

    self.items[key] = value 

 

  def record_success(self, key, n=1): 

    self.successes[key] += n 

 

  def record_tries(self, key, n=1): 

    self.tries[key] += n 

 

  def update_probabilities(self): 

    self.scaled_scores = {} 

    self.sum_scores = 0.0 

 

    # calculate scores for items 

    for k in self.items.keys(): 

      if not self.tries[k]: 

        # we have no tries, so successes don't matter yet 

        self.scaled_scores[k] = 1.0 

      else: 

        # calculate the upper confidence bound for this item 

        self.lambdas[k] = float(self.successes[k]) / float(self.tries[k]) 

        chisq = 1.0 - self.confidence 

        df = 2 * (self.successes[k] + 1) 

        delta = (scipy.stats.chisqprob(chisq, df) / 2) / self.tries[k] 

        self.scaled_scores[k] = self.lambdas[k] + delta 

      self.sum_scores += self.scaled_scores[k] 

 

    # update the probabilities 

    self.probabilities = {} 

    for k in self.scaled_scores.keys(): 

      self.probabilities[k] = self.scaled_scores[k] / self.sum_scores 
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  def next_key(self): 

    self.update_probabilities() 

 

    # pick the next key 

    x = random.uniform(0, 1) 

    cumulative_probability = 0.0 

    for (k, p) in self.probabilities.items(): 

      cumulative_probability += p 

      if x < cumulative_probability: 

        return k 

 

def printstats(s): 

  print '=====' 

  for k in 'ABCDE': 

    print "Item:%s successes=%2d tries=%2d lambda=%0.3f ucb=%0.3f p=%0.3f" % 

(k, s.successes[k], s.tries[k], s.lambdas[k], s.scaled_scores[k], 

s.probabilities[k]) 

 

if __name__ == '__main__': 

  '''Simulates a fuzzing campaign in which there are 5 files A-E. File A has 

a crash 

  density of 0.2, File B a crash density of 0.33, and File C a crash density 

of 0.14. 

  Each iteration will print the current number of successes, tries, and 

probability  

  that file will be chosen.''' 

  print "Scorable Set Demo" 

  s = ScorableSet() 

  for (key, value) in zip('ABCDE', '12345'): 

    s.add_item(key, value) 

 

  for x in xrange(500): 

    k = s.next_key() 

    printstats(s) 

    if k == 'A' and not (x % 5): 

      s.record_success(k) 

    elif k == 'B' and not (x % 3): 

      s.record_success(k) 

    elif k == 'C' and not (x % 7): 

      s.record_success(k) 

    s.record_tries(k) 
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